Dietary phosphatidylcholine supplementation decreased atherosclerosis development in Ldlr\(^{-}\) mice

Paulina Aldana Hernández, PhD Candidate

Supervisor: Dr. René Jacobs, PhD
Choline an essential nutrient for important biological functions

- Cell-membrane signaling (phospholipids)
- Lipid transport (lipoproteins)
- Neurotransmitter synthesis (acetylcholine)
- Betaine methyl-group metabolism

CHOLINE
Dietary choline has been linked to heart diseases

Relationship between plasma TMAO levels and cardiovascular events

- **Quartile 4**: $6.18 \mu M$
- **Quartile 3**: $3.67 \text{ to } 6.18 \mu M$
- **Quartile 2**: $2.43 \text{ to } 3.66 \mu M$
- **Quartile 1**: $< 2.43 \mu M$

P < 0.001 by log-rank test
Atherosclerotic plaque area is increased with choline and TMAO supplementation

Panel a

- Mouse
- Lesion (μm²)
- Chow
- 0.5% choline
- 1% choline
- 0.12% TMAO
- (n=8) (n=10) (n=10) (n=13)

Significance levels:
- p=0.050
- p=0.045
- p=0.20

Panel c

- Male
- TMAO (μM)
- Chow
- 0.5% choline
- 1% choline
- 0.12% TMAO
- (n=9) (n=10) (n=10) (n=13)

Significance levels:
- p=0.0001
- p=0.02
- p=0.005

Apoe^{−/−} male mice
Dietary choline does not influence atherosclerosis development in \textit{Ldlr}^{-/-} male mice

A:

- LC, \textit{Ldlr}^{-/-} control (0.1% choline)
- LCS, \textit{Ldlr}^{-/-} choline-supplemented (1% choline)
- LBS, \textit{Ldlr}^{-/-} betaine-supplemented (0.1% choline and 0.9% betaine)

F:

- Plasma TMAO (\textmu M)
 - LC
 - LCS
 - LBS

HFD (40% calories from fat) with 0.5% of cholesterol 8 or 16 weeks
Dietary TMAO does not influence atherosclerosis development in \textit{Ldlr}⁻/⁻ male mice

8 weeks

HFD (40\% calories from fat) with 0.5\% of cholesterol
8 or 16 weeks

LC, \textit{Ldlr}⁻/⁻ control (0.1\% choline)
LTS, \textit{Ldlr}⁻/⁻ TMAO-supplemented (0.1\% choline and 0.2\% TMAO)

Dietary choline or TMAO supplementation does not influence atherosclerosis development in Apoe\(^{-/-}\) male mice

28 weeks

<table>
<thead>
<tr>
<th>Diet</th>
<th>Lesion area (% of total area)</th>
<th>Plasma cholesterol (mM)</th>
<th>Plasma TG (mM)</th>
<th>Plasma choline (μM)</th>
<th>Plasma betaine (μM)</th>
<th>Plasma TMAO (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chow diet 12 or 28 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC, Apoe(^{-/-}) control (0.1% choline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS, Apoe(^{-/-}) choline-supplemented (1% choline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBS, Apoe(^{-/-}) betaine-supplemented (0.1% choline and 0.9% betaine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS, Apoe(^{-/-}) TMAO-supplemented (0.1% choline and 0.2% TMAO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• Increasing plasma TMAO levels with choline or TMAO supplementation did not increase atherosclerosis in either \(Ldlr^{-/-} \) or \(Apoe^{-/-} \) mice\(^1,2\)

• The effects of dietary choline on atherosclerosis development may depend on housing facilities, age, and the source or form of dietary choline supplementation\(^1\)

“The present studies suggest that the reduced ingestion of L-carnitine and total choline by vegans and vegetarians, with attendant reductions in TMAO levels, may contribute to their observed cardiovascular health benefits.”

Research question: Does the form of dietary choline influence atherosclerosis development?

- Aortic atherosclerotic plaque area --- Oil Red O
- Choline metabolites --- LC-MS/MS
- Lipids --- colorimetric assays
- Lipoprotein fractions --- FPLC

N=66 male mice (8-10 weeks)
HFD (40% calories from fat) with 0.5% of cholesterol 12 weeks

CON, n=21 0.1% choline
CS, n=21 0.4% choline
PCS, n=24 0.1% choline 0.3 % choline from PC

IP Injection POLOXAMER 407
Blood collection 0, 1, 2, 3, and 4 h
Hypothesis

Dietary choline supplementation (either as free choline nor PC) would not enhance atherosclerotic plaque formation in male *Ldlr*^{-/-} mice.
Dietary PC supplemented *Ldlr*⁻/⁻ male mice have lower atherosclerotic size lesion

Values are reported as means ± SEMs, n = 21-24. Groups without a common letter differ, p<0.05. Multiple comparison One-Way ANOVA
Plasma TMAO and TMA concentrations are elevated in PCS group

Values are reported as median [95% CI] in Whisker’s plots for normalized data, n = 21-24.
Groups without a common letter differ, p<0.05.
Multiple comparison One-Way ANOVA
PCS group has lower and VLDL-C and higher HDL-C fraction in plasma

n = 9
VLDL secretion did not change among dietary groups

Values are reported as means ± SEMs, n = 9, p<0.05
Multiple comparison One-Way ANOVA
Take home messages

• PC supplemented diet:
 ↓ Atherosclerotic lesion size
 ↑ Plasma TMA and TMAO levels
 = Plasma cholesterol and TG levels
 ↑ Plasma HDL-C and ↓ VLDL-C fractions

• Dietary PC supplementation might improve atherosclerosis through increased lipoprotein clearance

• Our data do not support the suggestion to reduce the consumption of meat and eggs due to be rich in PC to reduce the risk of CVD.
Acknowledgment

Supervisor:
 Dr. René Jacobs

Lab group:
 Dr. Jelske van der Veen
 Kelly-Ann Leonard
 Randal Nelson
 Nicole Coursen
 Stephanie Carlin
 Jessy Azarcoya Barrera

Dr. Catherine Field
 Susan Goruk

Dr. Jonathan Curtis
 Dr. Yuan Zhao

Audric Moses
 Lynette Elder

Dr. Caroline Richard
 Dr. Dennis Vance
 Dr. Jean Vance

Funding by:
Questions, comments?